

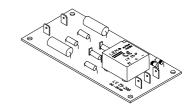
Voltage Transducer LV 25-200

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$egin{array}{l} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. Primary voltage, meast Primary nominal r.m.s. Measuring resistance	uring range	200 0 ± 30 10 R _{M min}	00 R _{Mmax}	V V mA
	with $\pm 12 \text{ V}$ with $\pm 15 \text{ V}$	@ $\pm 200 \text{ V}_{\text{max}}$ @ $\pm 300 \text{ V}_{\text{max}}$ @ $\pm 200 \text{ V}_{\text{max}}$	30 30 100	200 100 320	Ω Ω Ω
I _{SN}	Secondary nominal r.m	@ ± 300 V max	100 25	180	Ω mA
K _N V _C I _C V _d	Conversion ratio Supply voltage (± 5 %) Current consumption		± 12	′ 25 mA 15 15V) + I _S	V mA kV

Accuracy - Dynamic performance data


X _G	Overall Accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.8 < 0.2		% %
I _o I _{ot}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 25°C + 25°C + 70°C	Typ ± 0.10 ± 0.10	Max ± 0.15 ± 0.60 ± 0.35	mA mA
t _r	Response time @ 90 % of \mathbf{V}_{PN}		15		μs

General data

T_{A}	Ambient operating temperature	- 25 + 70	°C	
T _s	Ambient storage temperature	- 40 + 85	°C	
N	Turns ratio	2500:1000		
Р	Total primary power loss	2	W	
$R_{_1}$	Primary resistance @ $T_A = 25^{\circ}C$	20	kΩ	
R _s	Secondary coil resistance @ T _A = 70°C	110	Ω	
m	Mass	60	g	
	Standards	EN 50178 : 199	EN 50178 : 1997	

Note: 1) Between primary and secondary.

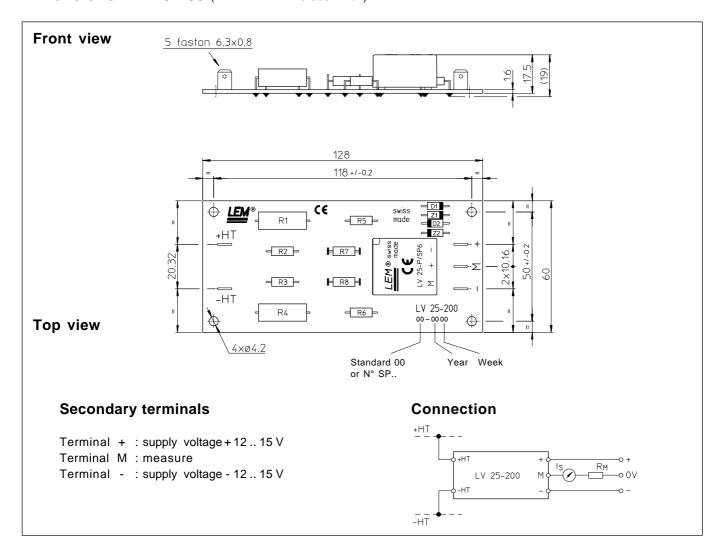
$V_{DN} = 200 \text{ V}$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

060912/5

Dimensions LV **25-200** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance • Transducer fastening

4 M4 steel screws

Recommended fastening torque

Connection of primary

· Connection of secondary

± 0.3 mm

4 holes Ø 4.2 mm

3.2 Nm or 2.36 Lb. - Ft.

Faston 6.3 x 0.8 mm

Faston 6.3 x 0.8 mm

Remarks

- \bullet $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.